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Branched amphiphilic peptide capsules (BAPCs) are peptide nano-spheres comprised of equimolar proportions
of two branched peptide sequences bis(FLIVI)-K-KKKK and bis(FLIVIGSII)-K-KKKK that self-assemble to form bi-
layer delimited capsules. In two recent publicationswe described the lipid analogous characteristics of our BAPCs,
examined their initial assembly,mode of fusion, solute encapsulation, and resizing and delineated their capability
to bemaintained at a specific size by storing them at 4 °C. In this report we describe the stability, size limitations
of encapsulation, cellular localization, retention and, bio-distribution of the BAPCs in vivo. The ability of our con-
structs to retain alpha particle emitting radionuclides without any apparent leakage and their persistence in the
peri-nuclear region of the cell for extended periods of time, coupled with their ease of preparation and potential
tune-ability, makes them attractive as biocompatible carriers for targeted cancer therapy using particle emitting
radioisotopes. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Ed-
itors: William C. Wimley and Kalina Hristova.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

There is a great deal of interest in the area of nanoparticle-mediated
therapies. Nano-carrier mediated targeted cellular therapy is a rapidly
growing area of research for the treatment of malignant and infectious
diseases. Particle emitting radioisotopes complemented with a tar-
getingmoiety are being recognized as some of themost promising cyto-
toxic candidates for the treatment of cancerous tumors. Nano-particles
enjoy distinct advantages in the delivery of drug payloads. Their
nanosizes enable them to be directly injected into systemic circulation
[1,2] and afford them longer circulating times [3,4]. Furthermore, the
circulating time can be increased by the surface modification of nano-
particles with hydrophilic moieties such as polyethylene glycol [5–7],
and nanoparticles composed of biodegradable polymers can be tuned
to release their drug payload in a controlled fashion; either by micelle
dissociation, polymer degradation, diffusion or in combination [8–10].
Mechanisms of nanoparticle internalization into cells are influenced
by their physiochemical properties. Biocompatible nanocomposites
such as lipid based carriers (liposomes andmicelles); polymeric vesicles
designed fromamphiphilic block co-polymers [11] such as polyethylene
lly Active Peptides and Proteins.
glycol–polylactic acid (PEG–PLA) and PEG–polycaprolactone (PEG–PCL)
[12]; nanocapsules [13,14], bola-amphiphiles (amphiphilic molecules
possessing two polar heads on both sides of an aliphatic chain) such
as aminoundecyltriethoxysilane (AUT) [15,16]; and carbon nanotubes
[17] have been studied for their efficacy as delivery systems.

Liposomes are preferred over other delivery systems due to their
ability to encapsulate both hydrophobic and hydrophilic contents.
They can also be modified with respect to their fatty acid and head
group composition, and surface alterations to modulate drug release
and target affinity. Some of the issues associated with liposomes such
as degradation by hydrolysis, oxidation, sedimentation, aggregation, or
fusion during storage are being addressed with the development of
niosomes [18] and proniosomes [19,20], however further testing is
needed to fully establish safety and efficacy.

The selection of any nanoparticle for a specific pharmacological use
is contingent on its mechanism of cellular uptake and intracellular
trafficking [21]. In addition, concerns relating to the successful encapsu-
lation of cargo, stability, specificity, bio-reactivity, biodegradability and
toxicity are also relevant. The ability to release their contents is not
necessarily a requirement for certain cargos. In the case of targeted
alpha particle therapy (TAT) – a treatment modality for metastatic
cancer and infectious diseases – the advantageous properties of 225Ac
[22] are partially offset by its systemic toxicity [23] due to the potential
accumulation of its daughter nuclides in off-target sites. Utilization of
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Fig. 2. S/TEM image of BAPCs. They containing 30% Hg label and imaged at 2 h post
hydration w/ negative glow discharge and uranyl acetate staining prepared as previously
described [39].
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alpha-emitters requires containment systems that allow the high-
energy alpha particles to penetrate target tissues while retaining the
radionuclide and its daughter isotopes. This poses a considerable
challenge since the energy (5 to 8 MeV/225Ac α-particle) released is
sufficient to disrupt the integrity of most traditional nano-carriers.
This property has hampered the development of 225Ac as a viable
radio-therapeutic agent [24,25]. The current use of chelating agents
for 225Ac radioimmunotherapy has been challenging as a consequence
of the poorly defined coordination chemistry of Ac(III), owing to the
lack of stable isotopes to enable routine chemical analysis [26].
Chelators like EDTA, DTPA, DOTA and PEPA [27,28] have been used to
complex with 225Ac with varying degrees of success. On the other
hand the potential of the otherwise promising 225Ac-HEHAmacrocyclic
complex in radiotherapy [29] has beenmarred by instability, due to the
coordinated 225Ac radionuclide decaying into its daughter isotopes [26].

Efforts to develop bifunctional chelators capable of stably binding
225Ac to antibodies as well as competently containing resulting daugh-
ter nuclides at target sites, have not been successful. This has forced
the development of sterically stabilized pegylated liposomes [30] and
stable pegylated phosphatidylcholine–cholesterol liposomes [31] for
radioimmunotherapeutic applications despite the inherent instability
and retention based limitations associated with traditional liposomal
systems. Moreover, novel liposomal carriers such as MUVELs
(Multivesicular liposomes) – involving the passive entrapment of
small vesicles into large liposomes – have been designed to enhance
the targeting capabilities and the retention of alpha particle emitting
daughters of 225Ac, in an effort to better utilize their positive cytotoxic
potential [32]. All of this liposome directed encapsulation techniques
are however lengthy and tedious; [30–32] and involve considerable
preparation times that include complex formation of 225Ac with a
chelate, annealing procedures, extended waiting periods, extrusions
and centrifugation; apart from addressing various issues to counter
physiochemical problems such as possible oxidation due to alpha
emissions [33,34] and beta [35] and gamma [36] radiation. The work
presented herein presents an alternative and flexiblemeans of radionu-
clide encapsulation that is easy to perform and generates stable in vivo
constructs.

Peptide based nano-assemblies show promise as nano-delivery
vehicles for the safe, targeted transport of drugs to specific tissues and
organs, with minimal off target accumulation [37] by overcoming
some of the problems associated with traditional lipid and viral based
delivery systems. BAPCs (Branched Amphiphilic Peptide Capsules) are
a new class of self-assembling peptide nano-capsular spheres [38,39]
formed during the cooperative association of a mixture of two (15–23
residue) poly-cationic branched amphiphilic peptides (Fig. 1). The
hydrophobic core sequences are derived from an internal fragment of
CaIVS3, the human dihydropyridine sensitive L-type calcium channel
segment [40]. The ability of the BAPCs to formbilayer-delimited spheres
(Fig. 2) capable of trapping solutes is a consequence of the unique
characteristics of its constituent peptides — bis(FLIVI)-K-K4 and
bis(FLIVIGSII)-K-K4, which reversibly transition from an alpha helical
conformation in 2,2,2-Trifluoroethanol, to a beta sheet in water
[38,39]. The branch point lysine in the sequence orients the two peptide
segments at ~90° angle, mimicking the geometry of diacyl phospho-
lipids. Coarse grain molecular dynamic simulations, [38] consistent
Fig. 1. Bilayer forming branched am
with S/TEM analysis, indicate the presence of a single capsular bilayer
(3–4 nm) comparable to that of a phospholipid system, which is
below the discerning resolution of electron microscopy.

Recently, we described how the flexible BAPCs possess many of the
properties of phospholipid vesicles, such as fusion, solute encapsulation
and an ability to be resized by membrane extrusion through polycar-
bonate filters with defined pore sizes [39].We also demonstrated several
biophysical characteristics including, their mode of assembly, high
thermodynamic stability, and their kinetics of fusion. The BAPCs can –

like their lipid counterparts – be both resized, and maintained there by
placing themat 4 °C. The versatility of these peptides to self-assemble en-
ables us to tag individual monomers with ligands andmolecular markers
for a variety of analytical and functional assays, making these constructs
particularly suited as biocompatible vehicles for the targeted delivery of
cargo into the cells. In this report, we study the stability, cellular uptake,
load capacity, retention within biological environments for extended
periods of time, tolerance to a radionuclide load, biodistribution and
capacity to maintain their structural integrity even when subjected to
alpha particle emissions.

2. Materials and methods

2.1. Peptide synthesis

2.1.1. Synthesis of bis(FLIVI)-K-K4 and bis(FLIVIGSII)-K-K4 variants
Peptideswere synthesized using solid phase peptide chemistry on 4-

(2,4-dimethoxyphenyl-Fmoc-aminomethyl) phenoxyacetyl-norleucyl-
cross-linked ethoxylate acrylate resin [41] (Peptides International Inc.;
Louisville, Kentucky) on a 0.1 mmol scale using Fmoc (N-(9-fluorenyl)
methoxycarbonyl)/tert-butyl chemistry on an ABI Model 431 peptide
synthesizer (Applied Biosystems; Foster City, CA). This resin yields the
carboxyamide at the C-terminus upon cleavage. The Fmoc amino acids
were obtained from Anaspec, Inc. (Fremont, CA). The branch point
was introduced by incorporating Nα,ε di-Fmoc-L-lysine in the fifth posi-
tion from the C-terminus. Deprotection of the two Fmoc protecting
groups leads to the generation of two reactive sites that allow for the
generation of the bifurcated peptide branch point. This enables the
simultaneous addition of either of the hydrophobic tail segments,
FLIVI and FLIVIGSII to the common hydrophilic oligo-lysine segment
by the stepwise addition of Fmoc amino acids [42]. The N-termini
phiphilic peptide sequences.

image of Fig.�2
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of the peptide were acetylated on the resin using Acetic Anhydride/N,
N-Diisopropylethylamine/1-Hydroxybenzotriazole prior to cleavage.
The peptide was cleaved from the resin using Trifluoroacetic acid
(TFA)/H2O (98:2, v/v) for 90 min at RT. The released peptide product
was washed 3× with diethyl ether and re-dissolved in water prior to
lyophilization. The water used throughout this study is deionized,
reverse osmosis treated and then distilled. The RP-HPLC purified
peptides were dried in vacuo and characterized on a Bruker Ultraflex
III matrix-assisted laser desorption ionization time of flight mass
spectrometer (MALDI TOF/TOF) (Bruker Daltonics, Billerica, MA) using
2,5-dihydroxybenzoic acid matrix (Sigma-Aldrich Corp., St. Louis, MO).
The dried peptides were stored at RT.

2.1.2. Synthesis of Rhodamine labeled peptide bis(FLIVI)-K-K4

‘Dye labeled peptides’were synthesized by solid phase peptide chem-
istry on a 0.1 mmol scale on MBHA [43] (4-methylbenzhydrylamine)
resin (Anaspec, Inc., Fremont, CA). After coupling the first amino acid
(Nα-Fmoc-Nε-t-Boc-L-lysine), the resin was treated with TFA/
Dichloromethane/H2O (80:18:2, v/v/v) for 30 min to remove the side
chain t-butoxycarbonyl protecting group; exposing the lysyl ε amine.
This was then manually reacted with the N-Hydroxysuccinimide
ester of Rhodamine B (Sigma-Aldrich Corp., St. Louis, MO) in presence
of N-N-Diisopropylethylamine to generate the label on the C-terminal
lysine. TheNα-Fmocwas de-protected and the remainder of the synthe-
sis was carried out as indicated earlier. The labeled peptidewas cleaved
from the resin using standard HF cleavage protocol [44,45]. The concen-
trations of all peptides were calculated using the molar extinction coef-
ficient (ε) of phenylalanine residues (two per sequence) at 257.5 nm
(195 cm−1 M−1) [46,47] on a CARY 50 Bio UV/Vis spectrophotometer
(Varian Inc., Palo Alto, CA) using a 0.3 cm path length quartz cuvette
(Starna Cells Inc., Atascadero, CA). The Rhodamine B adducted
sequences were incorporated at a prescribed mole percentage along
with the unlabeled bis(FLIVI)-K-K4 sequence of the BAPCs and utilized
in fluorescence experiments.

2.1.3. Synthesis of Pep-1
Pep-1 (Ac-KETWWETWWTEWSQPKKKRKV-CONH-(CH2)2-SH) was

synthesized by solid phase peptide synthesis using Fmoc-Cysteamine-
SASRIN™ resin, 0.6 meq/g, (Bachem, Torrance, CA) on an Applied
Biosystems 431APeptide Synthesizer at a 0.1mmol scale using standard
Fmoc(N-(9-Fluorenyl)methoxycarbonyl)/tert-butyl chemistry as de-
scribed [42]. The Fmoc amino acids used for the synthesiswere obtained
from Anaspec, Inc. (Fremont, CA). The N-terminal amino group was
acetylated and the peptide was cleaved from the resin using TFA/
water/triisopropylsilane (94:4:2, v/v/v) for 90 min at RT to generate
the C-terminal thiol. The peptide product was washed 3× with
diethylether and redissolved in water prior to lyophilization. This was
then purified using Reversed Phase-HPLC with 0.1% TFA/H2O and
0.1%TFA/90% Acetonitrile, as the binary solvent system. The purified
peptide was dried in vacuo and characterized on a Bruker Ultraflex III
matrix-assisted laser desorption ionization time of flight mass spec-
trometer (MALDI TOF/TOF) (Bruker Daltonics, Billerica, MA) using
α-Cyano-4-hydroxycinnamic acid matrix (Sigma-Aldrich Corp., St.
Louis, MO). The dried peptides were stored at RT.

2.2. Capsule formation and encapsulation

The bis(FLIVI)-K-KKKK and bis(FLIVIGSII)-K-KKKK peptides were
dissolved individually in neat 2,2,2-Trifluoroethanol (TFE, Sigma-
Aldrich Corp, St. Louis, MO). In this solvent the peptides are helical
and monomeric thereby ensuring complete mixing when combined.
Concentrations were determined as diluted samples in water using
the absorbance of phenylalanine as described in Section 2.1.2. The
bis(FLIVI)-K-KKKK and bis(FLIVIGSII)-K-KKKK peptide samples were
mixed in equimolar ratios to generate a fixed calculated concentration
of 0.1 mM in the final volume(s), then dried in vacuo. The dried peptide
samples were then hydrated to form capsules of desired concentration
by the drop-wise addition of water.

2.3. HeLa cell culture

HeLa cells were obtained fromDr. Stella Y. Lee's laboratory (Division
of Biology, Kansas State University) and grown in Dulbecco's minimum
essential medium (Life Technologies, Grand Island, NY) with 10% fetal
bovine serum. Cell cultures were passaged every 3rd–4th day by
trypsinizing them using TrypLETM Express (Life Technologies, Grand
Island, NY) and were kept in a humidified incubator at 37 °C and 5%
CO2. Themediawere replaced every 72hwith no addition of antibiotics.

2.4. Cellular uptake of branched amphiphilic peptide capsules

2.4.1. Cellular uptake and lysosomal co-localization of BAPCs
HeLa cells were seeded on Confocal 35 mm clear petri-dishes at a

density of 1 × 104 cells/mL and grown to ~80% confluence and washed
twice with PBS. Thereafter, 750 μL of fresh media was added along with
a 250 μL aqueous suspension of BAPCs incorporating 30% Rhodamine B
label on the bis(FLIVI)-K-K4 peptide. The final concentration of BAPCs
was 50 μM. The cells were incubated for 4 h at 37 °C at 5% CO2. After a
PBS wash, the cells were then incubated for 5 min with LysoTracker®
GreenDND-26 probe (Molecular Probes, Carlsbad, CA) at a final concen-
tration of 75 nM and washed again with PBS. Cells were observed and
images acquired using a Zeiss LSM 510 Meta Confocal Microscope
(Carl Zeiss, Gottingen, Germany).

2.4.2. Cellular uptake of BAPCs at different temperatures
HeLa cells were seeded on 12 mm culture dishes at a density of

1 × 104 cells/mL and grown to ~60% confluence. Freshmedia at 4 °C
and 37 °C respectively were added to the cells. Immediately thereafter,
100 μL of media was replaced by a solution of BAPCs prepared with 30%
Rhodamine B label on the bis(FLIVI)-K-K4 peptide. The final peptide
concentration was 100 μM and cells were incubated for 2 h at 4 °C
and 37 °C respectively. Cells were fixed with 3.7% formaldehyde at RT
for 2 h, followed by a wash in PBS-T (PBS solution containing 1% Triton
X-100) (Fisher Scientific LLC, Pittsburgh, PA). Subsequently, cells were
incubated with Mouse Anti-β-tubulin mAb antibody [48]. 2G7D4 (Gen
Script USA Inc., Piscataway, NJ) at dilutions of 1:1000 for 6 h. After
threewasheswith PBS-T, the tissueswere incubated 3 hwith secondary
antibody, Alexa Fluor® 488 goat anti-mouse IgG (Molecular Probes,
Carlsbad, CA). Stained tissues were washed again with PBS-T and
mounted in glycerol containing the nuclear stain DAPI (2 μg mL−1;
Sigma-Aldrich Corp., St. Louis, MO). Cells were observed and images
acquired using a Zeiss LSM 510 Meta Confocal Microscope (Carl Zeiss,
Gottingen, Germany).

2.5. Fluorescence and confocal microscopy

Images for Fig. 2 were taken using a LSM 700 laser scanning confocal
microscope (Carl Zeiss, Gottingen, Germany) and for Fig. 3 were taken
using a Zeiss LSM 510 Meta Confocal Microscope (Carl Zeiss, Gottingen,
Germany). The cell boundary and structure were visualized using
“differential interference contrast (DIC) microscopy”. All measurements,
except where stated, were performed with un-fixed, live cells.

2.6. Protein uptake studies

HeLa cells were seeded into 11 mmwells (48-well plate) at a density
of 1 × 104 cells/well and grown to roughly 60% confluence. Immediately
thereafter, fresh media were added to the cells and 100 μL of the same
was replaced by a solution of BAPCs containing Tcytc (5(6)-TAMRA
labeled cytochrome c) and TRNase A (5(6)-TAMRA labeled RNase A)
respectively. A parallel experiment was performed following the same
protocol, but with Pep-1 + Tcytc and Pep-1 + TRNase A respectively,
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as positive controls for protein uptake. The final concentrations of
peptides in each well were 50 μM for BAPCs and 5 μM for Pep-1. Cells
were incubated for 3 h, washed twice with pre-warmed PBS prior to
taking epifluorescence images. Subsequently, cells were trypsinized and
allowed to re-attach for 18 h and images re-acquired.
2.7. Long term cellular uptake study

HeLa cells were seeded on 11 mm culture dishes at a density of
1 × 104 cells/well and grown to ~60% confluence. Immediately
thereafter, 100 μL of media was replaced by a solution of BAPCs containing
30% Rhodamine B adducted bis(FLIVI)-K-K4; with a final BAPC concentra-
tion of 100 μM. The cells were incubated at 37 °C in an atmosphere of 5%
CO2 in air. The culturewas kept for 14days afterwhich confocalmicroscopy
images were acquired as previously detailed. Cells were trypsinized twice
during this period and the media were replaced every 72 h.
2.8. Encapsulation and retention of 225Ac in BAPCs

The bis (FLIVIGSII)-K-K4 and bis (FLIVI)-K-K4 peptides (100 μM ea.)
weremixed in theirmonomeric conformation in 50% TFE/H2O to ensure
proper mixing and then dried. The dried peptides were rehydrated
using a 0.15 M ammonium acetate buffer containing 100 μCi 225Ac
with ligand DOTA (tetraazacyclododecane-1,4,7,10-tetraacetic acid;
Macrocyclics, Dallas, TX) and allowed to incubate for 2 h. Non-
encapsulated radionuclide was removed by spin filtering the mixture
with a 30-kDa cut-off membrane filter followed by several buffer
washes. At the indicated time points, aliquots of BAPCs were with-
drawn, separated from supernatant on the 30-kDa cut-off membrane
filter, and the 225Ac activity remaining in the BAPCs was quantified
immediately and afterwards at 4 h to account for the daughters' decay
on a 1282 Compugamma CS, Universal Gamma Counter (LKB Wallac,
Gaithersburg, MD) equipped with the multi-channel analyzer using
150–600 keV energy window for 225Ac and its daughters.
2.9. Cellular uptake of the BAPC-encapsulated 225Ac into CasKi cells

CasKi cells (humanmetastatic cervical cancer cell line) were obtained
from ATCC and grown as previously described [49]. BAPCs carrying 225Ac
were then used immediately to treat cells, to ensure that the BAPC
diameters remain within the 50–200 nm range. Samples of 106 cells in
triplicate were mixed with BAPC encapsulated 225Ac; the cells were
spun into pellet at 0, 1, 2, 4, 6 and 24 h, and the 225Ac in the cellular pellet
was quantified in the gamma counter as described in Section 2.8.
Fig. 3. Lysosomal co-localization of BAPCs. Confocal microscopy analysis of HeLa cells
incubated at 37 °C with 50 μM 30% Rhodamine B labeled BAPCs for 4 h. A) HeLa cells
with lysosomal stain (green); B) Rhodamine B labeled BAPCs (red); C) bright field
image; D) merge image showing co-localization of BAPCs and the lysosomes (yellow).
Scale bar = 20 μm.
2.10. Biodistribution of 225Ac and its daughter 213Bi

All animal experiments were conducted with the permission of
the Albert Einstein College of Medicine Institute for Animal Studies.
225Ac was encapsulated into BAPCs by the addition of 500 μL 0.15 M
ammoniumacetate bufferwith pHof 6.5 containing 60 μCi 225Ac chloride,
to 1 mM lyophilized peptides for 30 min at room temperature. After
incubation the non-incorporated 225Ac was removed by centrifugation
on a micro-concentrator with a 30 kDa MW cut off filter. The degree of
225Ac incorporation into the BAPCs was calculated to be approximately
30% of the starting amount of 60 μCi. The 225Ac-BAPCs were then diluted
with sterile 0.15 M ammonium acetate buffer and eight CD-1 male mice
were injected intraperitoneally (IP) with 2 μCi 225Ac-BAPCs/100 μL.
As controls eight CD-1 male mice were IP injected with 2 μCi free
225AcCl3/100 μL. At 1 and 24 h post-injection, four mice from each
group were humanely sacrificed and their blood, liver, kidneys and
bone were removed, weighed and counted for radioactivity in a gamma
counter as described previously in Section 2.8.
3. Results and discussion

3.1. Cellular uptake of branched amphiphilic peptide capsules

In our earlier studies we noted that synthetic branched amphiphilic
peptides self-assembled to form solvent filled bilayer delimited spheres
(BAPCs) that had characteristic qualities (e.g., thermal, proteolytic and
chaotrope stability, cellular uptake, and low cytotoxicity) that made
them potential candidates for drug delivery; and as such they might
provide certain advantages over conventional lipid and/or viral based
drug delivery systems [38]. Apart from carrying out a number of bio-
physical studies we also carried out studies that characterized the initial
assembly and subsequent fusion of the BAPCs. The ability to re-size and
then maintain the BAPCs at fixed sizes allowed for the generation of
stable capsules that could exploit cellular fenestration and transport
processes [39]. These results prompted our current studies on the
cellular uptake and release capabilities of these nano-capsules. We
hypothesized that cellular degradative processes would eventually
cause release of the encapsulated solutes within the BAPCs. Realizing
that BAPCs initially form as 20–30 nm (diameter) capsules, we also
wanted to determine the maximum size of a solute that could be
entrapped, as well as determine the limits of percent solute encapsula-
tion from solution during the formation of the BAPCs. Initial studies
demonstrated the loading, solute retention and cellular uptake capabil-
ities of the BAPCs by observing the in vitro cellular co-localization of
two-color fluorescence from Rhodamine B labeled BAPCs incorporating
5(6)-Carboxyfluorescein solution encapsulate.

To examine cellular uptake and intra-cellular localization of BAPCs
(Fig. 3); 50 μM BAPCs prepared with a 30% Rhodamine B labeled
bis(FLIVI)-K-K4 were incubated with HeLa cells for 4 h; with the
lysosomes stained using LysoTracker Green DND-26, as described in
Section 2.4.1. As can be seen, the stained lysosomes (green) as well as
the Rhodamine B labeled BAPCs (red) are visualized in the HeLa cells,
in Fig. 3A and B respectively. Upon merging the two images (Fig. 3D)
both co-localized and non-co-localized BAPCs are observed, with non-
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co-localized particles predominating. At 2 h incubation most the BAPCs
seem to be co-localized with the lysosomes (data not shown). These re-
sults indicate that BAPCs enter cells through the endosomal route yet
rapidly escape the late endosomes; most likely due to lysis caused by
the proposed proton-sponge effect, commonly observed for cationic par-
ticles [50].

In another experiment (Fig. 4) HeLa cells were treated with the
Rhodamine labeled BAPCs followed by immune-fluorescence labeling
prior to fixation; to monitor uptake at two different temperatures,
4 °C and 37 °C. The cell nuclei were stained with DAPI (blue) and
cellular β-Tubulin was stained with Alexa Fluor® 488 goat anti-mouse
IgG (green) as previously described in Section 2.4.2 Cells incubated at
37 °C (Fig. 4B) readily took up the BAPCs while those incubated at
4 °C did not; instead the BAPCs appeared to accumulate at the cell sur-
face (Fig. 4A), presumably outside the cell.

These results indicate that cellular uptake is energy dependent. En-
docytosis is a general mechanism of cellular uptake that is associated
with receptor binding and/or attachment to the cellular membrane
prior to internalization [51]. Non-endocytotic membrane fusion based
uptake is known to be a function of the phase transition of the cellular
lipid bilayer [52], whereas penetration through the cellular membrane –

observed with certain poly-cationic cell penetrating peptides – appears
to proceed in an energy independent manner [53,54]. The exact mecha-
nism of BAPC uptake is not fully understood and might proceed via any
of the above-mentioned mechanisms; however it seems conceivable
based on lysosomal co-localization and temperature dependent uptake
data, that BAPCs are internalized by the cellular machinery via an energy
dependent endocytotic pathway. Themechanistic studies of BAPC uptake
were however not the main thrust of this work.
3.2. Encapsulation and retention

Early in our work with BAPCs, we tried to encapsulate several small
proteins, namely TAMRA-labeled RNase A (TRNase A, 13.7 kDa), and
TAMRA-labeled cytochrome c (Tcytc, ~12 kDa), as well as the intrinsi-
cally fluorescent EGFP (26.9 kDa). These experiments were designed
to test whether the BAPCs could deliver and then release the TAMRA-
labeled proteins to induce a measurable cytotoxic effect. Both cyto-
chrome c and RNase A were successfully encapsulated in the BAPCs
while the EGFP which has a tendency to aggregate in water was not.
In Sukthankar et al., S/TEM studies with BAPCs adducted with methyl-
mercury showed that nascent BAPCs are formedwith an average diam-
eter of 20–22 nm and a calculated internal volume of 4000 nm3 [39].
BAPCs individually loaded with Tcytc or TRNase A were incubated
with HeLa cells for 3 h. Pep-1, an amphipathic cell penetrating peptide
carrier capable of inducing cellular uptake of a variety of proteins and
peptides into cell lines with a high degree of efficiency [55], was
employed as a control delivery agent for Tcytc [56] and TRNase A.
Fig. 4. Temperature dependence of cellular uptake. Confocal microscopy analysis of HeLa
cells incubated with 100 μM 30% Rhodamine B labeled BAPCs for 2 h. A) HeLa cells at
4 °C and B) at 37 °C.
Fig. 5 demonstrates the ability of the BAPCs to encapsulate and deliver
both Tcytc and TRNase A into HeLa cells. In these representative images,
the efficiency of Tcytc transport with BAPCs (Fig. 5A) is slightly less
than that with Pep-1 (Fig. 5B); however in the case of TRNase A there is
no significant difference between the carrying capacity of the BAPCs
(Fig. 5C) versus Pep-1 (Fig. 5D). Cytochrome c [57] and RNase A [58]
are both known to effect cellular apoptosis. Interestingly enough, no
significant cellular apoptosis was observed in the case of either of the
proteins takenup byHeLa cells using BAPCs;while Pep-1mediated trans-
port led to frank cytotoxicity in the expected manner (data not shown).

The ability of the BAPCs to persist within HeLa cells was then
examined over a longer time period. A confocal microscopy based
study conducted using HeLa cells treated with Rhodamine B labeled
BAPCs (Fig. 6) revealed that even after 14 days, the BAPCs persist within
the cells and are transferred to daughter cells during mitosis without
any apparent degradation. The degradation of the BAPCs labeled with
Rhodamine B would tend to proceed with a dispersion of the dye/
dye–peptide fragments and/or an increase in the fluorescence intensity
of Rhodamine B due to a change in its local environment [59]. None of
these characteristics indicative of nanoparticles degrading within the
cell were observed. This would – in retrospect – be consistent with
expectation as cationic nano-particles, especially those containing
poly-lysine tend to escape and/or evade lysosomal degradation by
charge destabilizing the endo-lysosomal membranes [60]. It seems
that the cellular machinery is unable to breakdown the BAPCs. In
designing the BAPCs, we anticipated that they would be able to release
cargo within the cytoplasm or a cellular compartment. However, the
inability of the peptide capsules to do so makes our constructs, in their
current design, too stable for conventional targeted drug delivery. The
peptides that constitute the BAPCswere designed tomimic diacyl phos-
pholipids in molecular architecture. However, unlike liposomes where
the non-solvated tail groups are held together primarily byhydrophobic
interactions, BAPCs have the additional component of hydrogen bond-
ing; as well as inter- and intra-molecular pi-stacking (π–π) between
the phenylalanine aromatic rings of peptide sequences that apparently
imbues the capsules with remarkable stability.

3.3. Encapsulation of radionuclides using BAPCs

Given the ability of BAPCs to take up but not release cargo, and their
persistence in cells for extended periods of time suggested a potential
application — α-particle therapy. Targeted α-particle therapy, using
particle-emitting radionuclides holds promise as therapeutic agents in
treating micrometastases [61]. The effectiveness of this therapy is a
function of the α-particle's properties. They are emitted with energies
in the MeV range, with Linear Energy Transfer (LET) having a mean
energy deposition of 100 keV/μm, enabling them to produce more
lethal DNA breaks per radiation track as compared to β−-particles in
the cell nucleus. It has been estimated that a fewα-particle transversals
are sufficient to kill a cell [62]. The limited range of α-particles (50–
100 μm) confines their toxicity to a small radius from the site of the
isotope decay, enabling more specific tumor killing capability without
damage to the surrounding normal tissue; as opposed to β−-particles,
which have a much longer range [26]. Furthermore the cytocidal
effectiveness of α-particles has been shown to be independent of
oxygen concentration [63], dose rate and cell cycle position [64].
Additionally, studies performed on a leukemia model indicated
that α-emitter radionuclides exhibited cytotoxicity superior to that of
β−-radiation or γ-radiation and are capable of killing cancer cells
which are resistant to chemotherapeutic drugs such as doxorubicin
[65].

3.4. Targeted alpha particle therapy

There are a number of α-emitter radionuclides, one of which, 213Bi
(t1/2 = 46 min), has been proposed for therapeutic use and clinically
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Fig. 5. TAMRA labeled protein uptake in HeLa cells. Fluorescencemicroscopy images of HeLa cells after 3 h of incubation. The lower panel shows DIC images. A) BAPCswith Tcytc; B) Tcytc
with Pep-1; C) BAPCs with TRNAse A; D) TRNase A with Pep-1.
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evaluated. However, 213Bi is generator produced and has a relatively
short half-life requiring very rapid tumor targeting. An alternative
then involves utilizing 225Ac, which is the parent nuclide of 213Bi. A
single 225Ac (t1/2 = 9.9 days) generates four alpha and three beta parti-
cles during its disintegration, along with two useful gamma emissions,
including the 221 keV of 221Fr and the 440 keV of 213Bi (Fig. 7), that
can be used for in vivo imaging [66,67]. The enhanced potency
of 225Ac as opposed to 213Bi has been demonstrated in several pre-
clinical studies [65,68]. Ongoing research has focused on harnessing
the cell-killing power of these radionuclides by directing them to
metastatic cells via appropriate targeting vectors.

225Ac decay proceeds via a succession of daughter isotopes. This
decay releases 28 MeV of energy in the form of α-particles. However,
for the sake of optimal killing efficiency, the α-emissions and therefore
the 225Ac atom,must be delivered precisely and only to the region of in-
terest. A problem closely associated with the ‘targeting nanogenerator
Fig. 6. Long term cell uptake study. HeLa cells incubated with BAPCs with a 30% Rhodamine B
trypsinizations. A) Dark field image with channel selected for the excitation of Rhodamine; B)
approach’ [69] which involves stably chelating the 225Ac for delivery
in vivo is that, after the initial 225Ac decay to 221Fr, the co-ordinate
bonds from the chelating ligand to the central metal atom are not
retained. Thus the daughter isotopes distribute freely within the body
causing unwanted cytotoxicity.

Therefore it is desirable to confine the daughter isotopes of 225Ac
within the carrier during circulation and targeting. This problem is
compounded by the fact that the high kinetic energy of the α-particle
emissions penetrates the phospholipid membrane in liposomes, which
could otherwise be considered as suitable candidates for encapsulated
delivery. Moreover, the recoil trajectory of the daughter nuclides (80–
90 nm) penetrates the phospholipid membranes causing rupture and
leakage [31] leading to escape and redistribution within the body,
increasing toxicity. Retention of daughter isotopes is size dependent.
Theoretical calculations by Sofou et al. [33] suggest negligible
(b0.001%) daughter retention for the last isotope for 100 nm diameter
label on bis(FLIVI)-K-K4, observed after 2 weeks using confocal microscopy through two
bright-field image; C) overlap of the bright-field image and channel for Rhodamine.
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Fig. 7. The proposed decay scheme for 225Ac based on the recently published studies [64,65].
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liposomes and 50% retention of the same for liposomes with a diameter
larger than 650 nm. Even for giant liposomes (1 μmdiameter), retention
does not exceed 65%. The measured last daughter retention for the 650
nm liposomeswas found to be substantially lower (11%) thanwhatwas
calculated, owing to the tendency of 225Ac to bind to the negatively
charged phospholipid membrane leading to non-uniform distribution
within the liposome causing daughter loss after recoil. The large size
of such liposomes required to carry effective loads has serious limita-
tions with regard to fenestration and cellular uptake. This coupled
with low daughter retention capabilities makes them a cumbersome
system for efficient targeted radiotherapy. Considering the stability, up-
take and retentive capabilities of the BAPCs; they were tested as a po-
tential 225Ac carrier for targeted alpha particle therapy applications.

3.5. Radio-therapeutic potential of BAPCs

Experiments were performed tomonitor encapsulation of 225Ac into
BAPCs, aswell as its retentionwithin themover 7 days. Uptake of BAPC-
encapsulated 225Ac was then tested in vitro using human metastatic
cervical cancer (CasKi) cells. The 225Ac was well contained by the
Fig. 8. Cellular uptake and retention of BAPCs encapsulatedwith 225Ac. A) Encapsulation and re
225Ac into CasKi cells over 24 h.
BAPCs, with retention being≥95% of the original activity for the period
of 7 days (Fig. 8A). The cellular uptake of encapsulated 225Ac increased
in a time dependent manner and reached 33% at 24 h post incubation
(Fig. 8B). It is important to note that a much lower dose of 225Ac
(0.1 μCi) was used for this uptake experiment to avoid any cytocidal
effects on the cells that could cloud the cellular uptake results. These
findings were encouraging as they demonstrated the potential of
BAPCs as candidates for 225Ac encapsulation and cellular uptake.

3.6. Biodistribution of BAPCs encapsulating 225Ac

To investigate the behavior of BAPCs in vivowe studied the distribu-
tion of BAPC encapsulated 225Ac and its daughter 213Bi (along with a
control of free 225AcCl3 and 213Bi), in CD1mice at 1 and 24 h post IP ad-
ministration. Tissues were collected and analyzed at the indicated
times. The 440 keV γ-emission of 213Bi was used to calculate the
percentage of the injected dose per gram of organ (ID/g organ, %) as
described in Section 2.10. In Fig. 9 we see the results of the in vivo
distribution in mice for free 213Bi/225Ac versus encapsulated material.
At 1 h post injection, when both ‘BAPC encapsulated 225Ac’ and ‘free
tention of 225Acwithin BAPCs over 7 days and B) cellular uptake of the BAPC-encapsulated
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Fig. 9. Biodistribution of free and BAPC-encapsulated, 225Ac and its daughter 213Bi, in CD1 mice. A) 1 h time point; B) 24 h time point.
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225Ac’were still in the process of exiting the peritoneal cavity, therewas
no significant difference in organ uptake between BAPC encapsulated
225Ac and free 225Ac (except for bone, where free 225Ac is known to accu-
mulate). The uptake of 225Ac daughter 213Bi into the kidneys was higher
than that of 225Ac, as free 213Bi targets kidneys. The differences between
BAPC encapsulated 225Ac, and free 225Ac became more pronounced at
24 h post injection. The free 225Ac is completely cleared from the blood
via binding to the plasma proteins and being delivered to various organs.
BAPC encapsulated 225Ac stayed in circulation due to the small size of the
BAPCs, consistent with nanomaterials in the 10–20 nm size range that
tend to stay in circulation. Free 225Ac accumulated significantly more in
the liver (P = 0.03) and in the bone (P = 0.02) than the BAPC encapsu-
lated 225Ac. This confirms the tight retention of 225Ac within the vesicles.
213Bi daughter was present together with 225Ac pointing to retention of
the daughters by the BAPCs as well. The only organ where there was
more 213Bi present in comparison with 225Ac were the kidneys —which
serve as the ‘sink’ for 213Bi that has been released from any organ in the
body. Overall, encapsulated 225Ac cleared much more from the body
than ‘free 225Ac’ through the combination of renal, hepatobiliary and in-
testinal goblet cell (GC) secretion (IGCSP) pathways [70]. Taken together,
these results point to the ability of BAPCs to incorporate and retain 225Ac
and its daughter isotopes through 213Bi.
4. Conclusion

It is evident that the extraordinary stability of the BAPCs, in their
current design, limits their use as a drug delivery modality. However,
this same characteristic makes them appear ideal for targeted alpha
particle therapy for the treatment of metastatic and infectious diseases.
Our results show that alpha the emitting radionuclide 225Ac, and its ra-
dioactive daughters, can be sequestered within the lumen of the BAPCs
and then retained for days (and through multiple cell divisions), just
outside the nucleus of the cell. This portends well for cytocidal effects.

The fact that BAPCs withstand rupture from the ejected high energy
alpha particles and the resulting recoil of the daughter isotope, suggests
a self-annealing property for BAPCs. It is likely that BAPCs are taken up
by cells through a non-selective internalization process, possibly pro-
ceeding via transient pore formation, analogous to that observed with
some polycationic lipids [71] and polymers [72]. Should this assessment
be accurate; the BAPCs would be able to find utility as nano-carriers in
cellular systems. The poly-lysine cationic surface of the BAPCs provides
a convenient synthetic pathway for themodification and conjugation of
ligands, antibodies and molecular markers to achieve cellular targeting.
This could greatly reduce the whole body load required to kill desired
cells as well as reduce deleterious off-target side effects. The fact that
the capsules also remain in circulation for an extended periodmost like-
ly reflects their small size and flexibility. The ability of the BAPCs to
persist in cells through cell division(s) suggests a potential use as cell
lineage tracers and probes. BAPCs could be conjugated to quantum
dots in an effort to resolve some of the biocompatibility issues associated
with the latter [73]. The BAPCs constitute a unique and exciting new class
of biomaterial, whichwhile portending promise as a convenient agent for
targeted alpha particle therapy, could find application in many other
areas as well.
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Abbreviations

BAPCs branched amphiphilic peptide capsules
DMEM Dulbecco's minimum essential medium
FBS fetal bovine serum
TFE 2,2,2-Trifluoroethanol
DAPI 2-(4-amidinophenyl)-1H-indole-6-carboxamidine
CD circular dichroism spectroscopy
DLS dynamic light scattering or photon correlation spectroscopy
S/TEM scanning transmission electron microscopy
EM electron microscopy
Tcytc 5(6)-TAMRA labeled cytochrome c
TRNase A 5(6)-TAMRA labeled RNase A
EDTA 2-({2-[bis(carboxymethyl)amino]ethyl}(carboxymethyl)

amino)acetic acid
DTPA Penta(carboxymethyl)diethylenetriamine
DOTA 2-[4-nitrobenzyl]-1, 4, 7, 10-tetraazacyclododecane-N,N′,N″,

N‴-tetraacetic acid
HEHA 1,4,7,10,13,16-hexaazacyclohexadecane-N,N′,N″,N‴,N″″,N″‴-

hexa-acetic acid
PEPA 2-[4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,

N′,N″,N‴,N″″-pentaacetic acid
TETA 2-[4-nitrobenzyl]-1, 4, 8, 11-tetraazacyclotetradecane N,N′,N

″,N‴-tetraacetic acid
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